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Normal Form Games: Limitations
• In anN -player normal form game G , agent
n ∈ {1, . . . , N} chooses its action an ∈
{1, . . . ,M}, and receives payoff un(a) as
a function of the agents’ joint action a.

• The payoff for n under a joint mixed strat-
egy σ is un(σ) , Ea∼σ[un(an,a−n)], the
deviation payoff of n to m under σ is
un(an,σ−n) , Ea−n∼σ−n

[un(m,a−n)]

• Solution concept: σ is an ε-Nash Equilib-
rium if maxn,an

un(an,σ−n)− un(σ) ≤ ε

• The representational complexity is
O(NMN ), which is prohibitive when N is
large. Need more succinct representation!

• The computational complexity of solving
a Nash is PPAD complete. Need more ad-
vanced computational tools!

Succinct Game Models
• Games with Symmetry [3]:

– Anonymous game: agent n’s payoff depends only on its action and how many agents
choose each action: un(an,a−n) = un(an, f1, . . . , fM ).

– Symmetric game: ∀n. un = u.

– Role-symmetric game: Let R(n) ∈ {1, . . . ,K} denote the role for agent n. Then the
payoff for agent n depends on its action and the action distribution within each role:
un(an,a−n) = uRn (an, f1,1, . . . , f1,M , . . . , fK,M ).

• Games with Sparsity : in a graphical games [2], agent n’s payoff depends only on the joint action
profile over its neighborhood N (n) on an interaction graph, un(an,a−n) = un(an,aN (n)).

Empirical Game Models [1]
• Empirical Game Theoretical Analysis

(EGTA) employs simulation or sampling
to induce a game model.

• Formally, in EGTA the multiagent envi-
ronment is represented by a game oracle
O (e.g.,, a simulator)

• A dataset D of action-payoff tuples (a,u)
could be queried to the oracle, where u is
the (noisy) payoff vector associated with
action profile a.

• A normal-form game model induced from
D is called an empirical game.

• In EGTA, the game analyst does not need
to store the information of the whole game
matrix to compute an approximate Nash.

Game Model Learning [4] & Iterative Structure Learning Framework
• Game model learning: Solving a complex unknown game by learning a succinct representation

of it in a hypothesis game space whose structure can be exploited for equilibrium computation,
the solution of which can be served as an approximate solution of the origin game
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Figure 1: Game Model Learning & Iterative Structure Learning Framework

• Iterative structure learning framework: The only explicit game descriptors are the sets of agents
and actions. Starting with an arbitrary guess solution σ∗, on each iteration,

– Queries oracle O in the region of σ∗, obtaining by this online sampling process a new
dataset , which is added to the data buffer D.

– Through offline interaction with D, we then learn a game model using function approxi-
mators, and solve it to reach the next σ∗.

K-Roles: Learning Role Symmetry

• Hyperparameter K̂: the number of roles

• Idea: Represent each agent as their devia-
tion payoffs and use unsupervised learning
on the vector embeddings

• Can be regarded as feature extraction.
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Figure 2: Performance of K-Roles on a
300-agent, 3-action, 3-role role-symmetric
game. Left and right figures respectively
measures the equilibrium and structure
quality, w.r.p. the true game model

G3L: Learning Graphical Structure
• Hyperparameter κ̂: the maximum size of

neighborhood

• Idea: Greedily learn a graphical model
guided by payoff training loss.

• Can be regarded as feature selection.
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Figure 3: Performance of G3L on a
100-agent, 2-action graphical game. Left and

right figures respectively measures the
equilibrium and structure quality, w.r.p. the

true game model

Symmetry Can Arise from Sparsity
• un = yn − ζ · xn. yn is a symmetric game

term while xn is a graphical game term,
ζ ≥ 0 a structure parameter defining a
spectrum of game between perfect symme-
try and perfect sparsity.
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Figure 4: Performance of all methods on an
approximately structured game class.
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