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ABSTRACT
In online advertising, advertisers can purchase consumer relevant

data from data marketplaces with a certain expenditure, and exploit

the purchased data to guide the bidding process in ad auctions.

One of the pressing problem faced by advertisers is to design the

optimal data purchasing strategy (how much data to purchase to be

competitive in bidding process) in online ad auctions. In this paper,

we model the data purchasing strategy design as a convex opti-

mization problem, jointly considering the expenditure paid during

data purchasing and the benefits obtained from ad auctions. Using

the techniques from Baysian game theory and convex analysis, we

derive the optimal purchasing strategies for advertisers in different

market scenarios. We also theoretically prove that the resulting

strategy profile is the unique one that achieves Nash Equilibrium.

Our analysis shows that the proposed data purchasing strategy can

handle diverse ad auctions and valuation learning models. Our nu-

merical results empirically reveal how the equilibrium state changes

with variation of the strategic environment.
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1 INTRODUCTION
Targeting is a technique to enable advertisers to deploy advertising

campaigns on the consumers from certain market segments, such

that the advertisers can spend their finite ad budgets on the most

relevant consumer. It is difficult to conduct and evaluate a qualified

advertising without enough consumer relevant data. Fortunately,

with the advance of online tracking techniques, the advertisers now
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can collect a large amount of relevant data, such as third-party-

cookies [6, 19, 26, 49], to build the profiles of consumers, and then

conduct accurate targeted advertising.

The consumer relevant data is currently traded over the Inter-

net. The collection and distribution of consumer relevant data are

conducted by Data Management Platforms, ranging from well-

known data analysis companies such as Acxiom
1
and Bloomberg

2
,

to emerging companies such as Bluekai
3
and eXelate

4
. DataManage-

ment Platforms create online marketplaces, where these companies

can upload consumers relevant data to make profits, and advertisers

can purchase the desired datasets to enable targeted advertising.

The marketing demand for such highly detailed, consumer-level

data is mostly driven by advertising industries.

In advertising ecosystem, major search engines are now leverag-

ing auctions as main monetization channels [16, 21, 32, 42], includ-

ing forms of sponsored search auctions [31, 39, 42, 43] and realtime

bidding (RTB) [12, 14, 50]. In sponsored search, a selective set of ads

related to the user query will be shown together with returned rele-

vant webpages after in the search engine, while In RTB for display

advertising, an ad impression with related information will be sent

to advertisers through the ad exchange when the user visits the

website. For both scenarios, auctions are held and bids are collected

to determine the ad allocations and corresponding charges. How-

ever, the uncertainty of valuations over the ad slots, which may

varies across advertisers, causes difficulties for launching successful

ad campaigns. Without full information about the consumers, it

is hard for advertisers to extract the precise valuations for the ad

slots. Either underestimation or overestimation of valuations could

lead to improper bidding strategies in ad auctions.

Therefore, Data Management Platforms have become demand-

ing places for advertisers to refine their valuations by purchasing

consumer relevant data. By buying enough amount of data, the

advertisers can extract valuable information about the demographic

and psychographic characteristics of consumers via the data mining

techniques [19, 49], and further tailor their ad campaigns to their

preferred consumers. While advertisers can learn more precise val-

uations from buying a larger amount of data, they also have to pay

more money for such purchasing, or exert more efforts or energy to

extract such valuable information. Hence, one of the pressing prob-

lems faced by advertisers is to design an optimal data purchasing

strategy by making a trade-off between the expenditure paid during

data purchasing and the expected utility increase in the auction.

There are several challenges in designing such a data purchasing

strategy for online ad auctions. The first challenge comes from the

various formats of ad auctions. The ultimate goal of an advertiser

1
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2
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is to purchase an appropriate amount of data to maximize her ex-

pected utility in ad auctions. Thus, the data purchasing strategy

design is highly related to the specific procedure of the auction.

However, the variety of ad auctions in practice, such as General-

ized Second Price (GSP), Generalized First Price (GFP) [21], and

Vickrey-Clarke-Groves (VCG) mechanism [17, 29, 47], increases

the difficulty in analyzing data purchasing strategies.

The second challenge comes from the diverse valuation learning

models of advertisers. The data purchasing strategy design is to

solve the payoff maximization problem under the strategic envi-

ronment. The payoff of an advertiser is defined as the difference

between the utility obtained from ad auction and the expenditure

paid to purchase consumer relevant data. In order to extract true

valuations and then obtain high utilities in ad auctions, advertisers

may adopt diverse valuation learning models [33, 34, 44] upon the

purchased data. Without specifying the learning procedure of other

advertisers, an advertiser may not be possible to infer her competi-

tors’ data purchasing strategies, which significantly increases the

difficulty of designing an optimal data purchasing strategy.

In this paper, we develop a framework to solve the optimal data

purchasing strategy design problem, by jointly considering the

above challenges.We first model the various ad auctions as Bayesian

games with the same ad allocation rule. Using Payoff Equivalence

Principle [38], we demonstrate that the expected utilities of ad-

vertisers are independent on the specific formats of ad auctions,

decoupling the data purchasing stage from the auction stage. We

then propose a data purchasing model to capture the diverse valua-

tion learning models of advertisers, and formulate the optimal data

purchasing strategy design as a convex optimization problem. Us-

ing the techniques from game theory and convex analysis, we can

explicitly derive the optimal data purchasing strategy for advertis-

ers, and theoretically prove that such a strategy profile is a unique

Nash Equilibrium. Our numerical results further illustrate how

would advertisers behave under various strategic environments.

We summarize our key contributions in this work as follows.

• First, we propose a general framework consisting of an ad

auction model and a data purchasing model. The framework is

powerful enough to comprehend a variety of ad auction formats

and different classes of learning agents, as well as to express the

trade-offs advertisers have to consider when purchasing data. To the

best of our knowledge, we are the first to study the data purchasing

strategy design in an online ad auction setting.

• Second, we begin with considering a simple but representative

case, where two Gaussian Learning agents compete for two dif-

ferent ad slots. We rigorously prove the existence and uniqueness

properties of the Nash Equilibrium, as well as verify several intu-

itions of the equilibrium structure under both homogeneous and

heterogeneous settings. Through this basic case, we demonstrate

the rationale of finding the optimal data purchasing strategy.

• Third, we further extend this work by considering a more

general scheme, where there can be a finite arbitrarily number

of advertisers and slots. We show a general method to calculate

the optimal strategy, and prove that the uniqueness and existence

of the equilibrium are guaranteed given that the agents’ learning

processes satisfy a particular structure.

• Last but not least, we conduct a numerical study on two partic-

ular types of learning agents under our framework. We empirically

reveal how much information will advertisers purchase under dif-

ferent strategic environments.

The rest of this paper is organized as follows. Section 2 provides

the notations and the basic framework used throughout this paper.

Mechanism
is announced

Agents buy data
from Data 

Market

Agents extract
relative messages Ad auction starts Agents receive

their outcomes

Figure 1: The timing of the game.

In Section 3, we solve the optimal strategy design under a simple

setting. In Section 4, we extend the model to a more general scheme

and provide the corresponding theorems. Numerical results are

provided in Section 5 to show how the different strategic environ-

ments affect the optimal strategies. Related works are reviewed in

Section 6. We summarize our work in Section 7.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we develop models and notations used throughout

this paper. Since we focus on the data purchasing strategy design

in context of online advertising, which is related to the formats of

ad auctions, we first present the ad auction model and then the data

purchasing model.

As shown in Figure (1), we consider one round of ad auction

which can be regarded as a two-stage game: it consists of a data

purchasing (DP) stage and an ad auction stage. We will later specify

that the first stage is a complete information game while the second

is a Bayesian game. From now on we refer the advertisers as the

agents in the model. First, the auctioneer announces the rules of ad

auction. Next, agents purchase data from Data Market according to

some strategies. After that, agents extract messages from purchased

data, and refine their knowledge about their valuations over ad slots

according to some learning model. Finally, all agents participate

in the ad auction with their updated knowledge and receive the

outcomes.

2.1 Ad Auction Model
There are N agents competing for K ≤ N ad slots. Denote ωi as
the valuation of agent i’s ad for a click. In practice, there may be

different classes of agents each round [11], and the valuation of one

slot to different agents with various experience and identities is not

fixed [2]. We capture these uncertainties by modeling that in prior,

valuations of agents within the same class are identically distributed,

while valuations of agents of different classes are independent [35,

41, 46]. We let η(i ) be the class of i , which is interpreted as the

finest prior information to distinguish between the agents. In our

framework η(i ) indicates: (1) the prior valuation distribution, and

(2) the cost function (described in Section 2.2), of agent i . The
prior distribution for agents of class η(i ) is denoted as Fη (i ) , i.e.,
ωi ∼ Fη (i ) . We assume the class information to be public prior

knowledge, which is widely adopted by works regarding classical

Bayesian game theory [28, 30]. Regarding her own valuation, we

suppose i just knows as much as anybody else before purchasing

data, i.e., Fη (i ) . But after i having purchased and learned from data

(targeting), from her point of view the knowledge of ωi is updated
from Fη (i ) to a new distribution, which is not observed by others.

Every agent reports her bid bi and therefore gets ranked by it.

Then some agents win and obtain their positions from top to bottom

according to their ranking, leaving those who lost unassigned. Each

ad slot j has a corresponding click-through-rate (CTR) c j .We restrict

c j ≡ 0 for j > K and denote c = (c1, c2 . . . cN )T as the CTR profile.

In this paper, we assume c1 > c2 > . . . > cK > 0.



The auctioneer sorts the agents in descending order of their bids.

The allocation rule can be represented as x : RN 7→ cN . More

specifically, given bid profile b = (b1,b2 . . .bN ), xi (b) = c j if and
only if bi is the j-th highest bid in b (ties are broken randomly).

Then agent i’s utility would be ui = ωixi (b) − pi (b), where pi (b)
is her charge according to some payment rule.

The study of the equilibrium in ad auctions is of the central role

in most works in this field. We formally define the bayesian view

of equilibrium concept in our ad auction model as follows.

Definition 2.1 (Bayesian-Nash Equilibrium in Position Auction
(BNEPA)). A profile of (b∗

1
,b∗

2
. . .b∗N ) forms a Bayesian-Nash Equi-

librium in a position auction if∀i,b ′,E[ui (b
∗
i ,b
∗
−i )] ≥ E[ui (b

′,b∗
−i )].

The guarantee of equilibriums is closely related to the allocation

rule, payment rule, and the distribution of agents [28]. However,

analyzing the existence of equilibrium of a particular form of posi-

tion auction is not our main focus in this work. We will assume that

the mechanism announced by the auctioneer will always guarantee

agents to reach a BNEPA, which is formally defined as follows.

Definition 2.2 (Standard Position Auction (SPA) ). A position auc-

tion is called an Standard Position Auction, if there always exists a

BNEPA regardless of the strategies in DP stage.

Examples of SPA include laddered auction proposed by [3] for

its truthful dominant strategy. Generally speaking any position

auctions with VCG-like payment rule are SPA for the same reason.

However, things become complicated when coming to payment

rules of GFP and GSP. The authors of [13] proved there exists only

one symmetric BNE in a class of ad auctions representing by GFP.

And [28] provided with a necessary and sufficient condition for GSP

to have BNE in a symmetric setting. Leveraging Payoff Equivalence

Principle [38], the expected payoffs of agents at auction stage at a

BNEPA is independent on its auction format, which will help us

simplify the computations. In the remaining of this paper, we will

assume the existence of BNEPA at the auction stage, and focus on

designing optimal strategy for DP stage.

2.2 Data Purchasing Model
At data purchasing stage agents i may acquire a costly signal (data)

si to refine her knowledge of ωi (targeting) , with si ∈ [s, s]. Sig-
nals received by different buyers are independent. The advertiser

can choose the quality of signal, αi , she buys, with higher αi in-
dicating a more precise picture of ωi but also costing more, and

αi ∈ [α ,α]. Agents of the same class µ = η(i ) as i have the same

cost function Φµ (α ), which is assumed to be public knowledge,

satisfying Φµ (α ) = 0 and is non-decreasing in signal quality α . We

interpret Φµ as the cost to acquire a certain level of information

for i , including like the unit price of data, or i’s time or energy cost

of data mining on such amount of data. So the cost for the same

quality of data may vary across different classes of agents. The

qualities of data agents choose to purchase will also be referred as

their DP strategies. We will later define and show how to find the

equilibrium (α∗
1
,α∗

2
. . . α∗N ) in data purchasing stage.

Advertiser i who has data quality αi will update her belief about
ωi according to Bayes Rule: her knowledge ofωi updates from Fη (i )
to F ′i , withmeanvi updated tov

′
i andωi ,vi ,v

′
i ∈ [ω,ω].We assume

agent i will choose her bidding strategy bi according to posterior

mean v ′i , i.e., she submits bi (v
′
i ) according to some function bi (·) at

auction stage. More precisely, v ′i (si ,αi ) ≡ E[ωi |si ,αi ]. Notice that
the knowledge of v ′i is uncertain before acquiring si , so we need

to introduce Hαi (v ) = Pr {v ′i (si ,αi ) ≤ v} as the prior cumulative

distribution of v ′i with index v and parameter αi , and let hαi be the
corresponding density function. For the simplicity of notation, we

may interchangeably denote Hαi (x ) = Hi in this paper.

2.3 Problem Formulation
Our goal is to properly formulate the problem agents facing at

DP stage, to define the notion of the optimal DP strategy, and to

show how to calculate such strategy. To handle the first task in this

subsection, we now have to trace agents’ decision-making process

backward from auction stage to DP stage.

Suppose agents choose a DP strategy α = (α1,α2 . . . αN ) given
a BNEPA (b∗

1
,b∗

2
. . .b∗N ) already have been reached at the SPA.

Then from agents i’s point of view, by Integral-form Envelope

Theorem [38], her expected utility can now be written as [28]

E[ui (b∗i (v
′
i ), b

∗
−i ] =

K∑
j=1

c j · zi, j (v ′i ) · v
′
i − E[pi (v

′
i )]

=

K∑
j=1

c j ·
∫ v ′i

ω
zi, j (t )dt . (1)

Where zi, j (v
′
i ) = Pr (xi (b) = c j ) denotes the probability that i

obtains j-th slot. This formulation holds true when E[pi (ω)] = 0.

Then for condition of agent 1, the probability she wins the first

slot is z1,1 (v
′
1
) =

N∏
l=2

Hl (v
′
1
), for the second slot is z1,2 =

∑
k,1

(1 −

Hk (v
′
1
))

∏
l,1,k

Hl (v
′
1
). . . . In general,

z1, j (v ′1) =
∑
T ,

T ⊆{2,3, . . .,N },
|T |=j−1

∏
k∈T

(1 − Hk (v
′
1
))

∏
l∈{2,3···N }\T

Hl (v
′
1
). (2)

And similar derivations for other zi, j . To simplify notation we

define a auxiliary function Qi (t ) =
K∑
j=1

c j · zi, j (t ), then equation (1)

can be simplified as

∫ v ′i
ω Qi (t )dt .

With the above derivations, we can now consider i’s DP strategy.

Since v ′i is unknown prior to si , we should do expectation of ui in
equation (1) with respect to v ′i :

Ev ′i
[E[ui (b∗i (v

′
i ), b

∗
−i ]] = Ev ′i



∫ v ′i

ω
Qi (t )dt



=

∫ ω

ω
*
,

∫ x

ω
Qi (t )dt+

-
hαi (x )dx =

∫ ω

ω
(1 − Hαi (x ))Qi (x )dx .

Considering the expenditure paid during DP and the outcome

received during auction, the agents choose their DP strategies ac-

cording to the following optimization problem:

αi ∈ argmax

∫ ω

ω
(1 − Hαi (x ))Qi (x )dx − Φη (i ) (αi ). (3)

Denote the above payoff to be optimized as πi (αi ,α−i ). Comparing

equation (1) and (3), we would find goals of two stages are totally

different: for auction stage it is to choose some bidding strategy to

maximize utility expectation (1), while for DP stage it is to choose

some α to maximize the deterministic payoff (3). So the auction

stage should be considered as a Bayesian game while the DP stage is

a complete information game. For DP stage, its equilibrium concept

is defined as follows.



Definition 2.3 (Nash Equilibrium in Data Purchasing (NEDP )).
A data purchasing strategy profile (α∗

1
,α∗

2
. . . α∗N ) forms a Nash

Equilibrium if for any i,α ′, we have πi (α
∗
i ,α
∗
−i ) ≥ πi (α

′,α∗
−i ).

Thus, our goal is to derive optimal data purchasing strategy α ∗

under different scenarios. We start from solving a simple case.

3 GAUSSIAN LEARNINGWITH LINEAR COST
In this section, we focus on a simple scenario to demonstrate the

basic rationale of finding the optimal DP strategy. In this simple

case, there are 2 ad slots and 2 agents, i.e., each agent is guaran-

teed to win a slot. We describe one representative scheme under

the framework developed in Section 2. Specifically, in the auction

stage, the payment rule would be VCG mechanism in position auc-

tion [21]. Thus, truthful report would be the dominant strategy

towards equilibrium state. In consistence with previous economic

learning models, in the DP stage Gaussian (GAS) Learning Model is

adopted for advertisers, for it nicely quantify the “quality of signals"

and is feasible to estimate empirically [15, 23]. We solve this model

by proving properties such as the existence and uniqueness of the

equilibrium as well as showing how to calculate the optimal DP

strategy, for both homogeneous and heterogeneous settings.

3.1 Setup
Since there are only two agents, for the simplicity of notations we

will suppress the class indexes and let agents’ names represent their

own belonging classes: η(1) = 1, η(2) = 2. Agents have Gaussian

priors of their valuations: Fi = N (vi ,
1

βi
), where βi > 0 measures

the precision of the information i at hand in prior. After purchasing

data of quality αi , agents i receives some private information, works

out some data mining, and then obtains si = ωi + ϵi , ϵi ∼ N (0, 1

αi ).

Here only the summation si is observed by i , and the noise term ϵi
is independent on ωi . So we can see that the higher quality αi is
acquired, the more precise the signal is. Agents follow a Gaussian

Learning and update their beliefs about ωi according to Bayes Rule:

ωi |si ,αi ∼ N (v ′i ,
1

αi+βi
), where v ′i =

αi si+βivi
αi+βi

.

To form the optimization problem, we now have to compute

the learning structure H . According to the properties of Gaussian

Distribution, it can be calculated that the distribution of v ′i prior to

si is N (vi ,σ
2

i ), where σ
2

i =
αi

βi (αi+βi )
. Therefore,

Hαi (v ) =
∫ v

−∞

1√
2πσ 2

i

exp



−
(x − vi )2

2σ 2

i



dx . (4)

We assume the cost is linear: Φi (αi ) = ϕi (αi − α ),ϕi > 0.

From now on we start to consider the problem from agents 1’s

point of view. Corresponding to equation (1), the expected utility

for 1 at auction stage when truthful report is

E[u1 (v ′1)] = c1

∫ v ′
1

−∞

H2 (x )dx + c2

∫ v ′
1

−∞

1 − H2 (x )dx . (5)

The following lemma shows that there always exists an equilibrium

as long as their prior means are the same, which means equilibrium

is reachable for agents with similar beliefs.

Lemma 3.1. If v1 = v2, then there exists a NEDP .

Proof. By equation (4) we obtain

∂H1 (v )
∂α1

= −
v − v1

2

√
2π

exp



−
(v − v1)

2

2σ 2

1




√
β 3

1

α 3

1
(α1 + β1)

,

And notice that

∂π1
∂α1

= −

∫ +∞

−∞

∂H1 (v )
∂α1

Q1 (v )dv − ϕ1

=
(c1 − c2) · (σ 2

1
+ σ 2

2
)−

1

2

2

√
2π (α1 + β1)2

exp



−
(v1 − v2)

2

2(σ 2

1
+ σ 2

2
)



− ϕ1, (6)

combining with equation (3) (5), it can be derived that

∂2π1
∂α 2

1

= −
c1 − c2

2

√
2π (α1 + β1)4

1√
σ 2

1
+ σ 2

2

exp



−
(v1 − v2)

2

2(σ 2

1
+ σ 2

2
)





2(α1 + β1) +

σ1
σ 2

1
+ σ 2

2

*
,
1 −

(v1 − v2)
2

σ 2

1
+ σ 2

2

+
-


.

And the same form for agents 2. So it can be observed that when

v1 = v2, we have πi being strictly concave in αi . By Proposition

8.D.3 in [37], since the strategy space for every agents is [α ,α],
which is a nonempty, convex and compact subset of Euclidean

space, combining with that πi is continuous in (α1,α2) and concave
in αi , there exists a Nash equilibrium. □

3.2 Homogeneous Agents
In this subsection, we restrict agents to be homogeneous, meaning

both of them belong to the same class. i.e., v1 = v2 = v, β1 = β2 =
β,ϕ1 = ϕ2 = ϕ. We claim there is one and only one equilibrium

in this setting, and we also show how to derive such purchasing

strategy in the proof.

Theorem 3.2. For 2 homogeneous agents, 2 slots with GAS Learn-
ing and linear cost, there exists a symmetric and unique NEDP .

Proof. By lemma 3.1, there must exist a NEDP when v1 = v2 =

v . Denoteνi (α1,α2) =
(c1−c2 ) ·(σ 2

1
+σ 2

2
)−

1

2

2

√
2π (αi+βi )2

, thenwe check theKarush-

Kuhn-Tucker (KKT) first order condition for agents i’s problem,




∂πi (α1,α2 )
∂αi

= νi (α1, α2) − ϕ = −λi + γi
λi (αi − α ) = 0

γi (αi − α ) = 0

λi , γi ≥ 0

, (7)

here λi and γi are the Lagrange multipliers for restrictions αi ≥ α
and αi ≤ α respectively.

Suppose there exists an asymmetric equilibrium (α∗
1
,α∗

2
), w.l.o.g.

assuming that α∗
1
< α∗

2
. This implies α∗

1
< α and α∗

2
> α . Then

by (7), γ1 = 0 and λ2 = 0. So we have

∂π1 (α ∗
1
,α ∗

2
)

∂α1

= −λ1 ≤ 0

and

∂π2 (α ∗
1
,α ∗

2
)

∂α2

= γ2 ≥ 0. Then ϕ = Φ′
1
(α∗

1
) ≥ ν1 (α

∗
1
,α∗

2
) >

ν2 (α
∗
1
,α∗

2
) ≥ Φ′

2
(α∗

2
) = ϕ .Which is a contradiction. So α∗

1
= α∗

2
.

Now we prove the uniqueness of the equilibrium. First we show

the interior equilibrium is unique. By (7),
∂πi
∂αi
= 0 for the interior

equilibrium. Since we have proved the equilibrium must be sym-

metric, this shows that
∂πi (α,α )

∂α = 0. i.e., νi (α ,α ) − ϕ = 0. Since

σi is increasing in αi and νi (α ,α ) is decreasing in α , therefore, it
guarantees the uniqueness of interior equilibrium.

Then let us look at the corner equilibrium. There is only two

possible corner equilibriums (α ,α ) and (α ,α ). Suppose these two

equilibriums exist simultaneously, by (7) we have
∂πi
∂αi
= −λi ≤ 0 at

(α ,α ) and ∂πi
∂αi
= γi ≥ 0 at (α ,α ). But this implies ϕ ≥ νi (α ,α ) >

νi (α ,α ) ≥ ϕ . Since α < α , this yields a contradiction. So the corner
equilibrium must be unique.



Finally we show the interior equilibrium and corner equilibrium

cannot exist concurrently. W.l.o.g., suppose there is an interior

equilibrium (α∗,α∗) and a corner equilibrium (α ,α ). Then we have

∂πi
∂αi
= 0 at (α∗,α∗) and ∂πi

∂αi
= γi ≥ 0 at (α ,α ). But we again see

that ϕ = νi (α
∗,α∗) < νi (α ,α ) = ϕ, contradicting to α < α∗. So the

corner equilibrium and the interior equilibrium cannot both exist.

Therefore, we have completed the proof that the equilibrium

must be symmetric and unique. □

Under homogeneous setting, we can observe that only prior

precision β and marginal cost ϕ affect the interior equilibrium α∗.
Since the analytic form of ν is provided, we can calculate the op-

timal DP strategy in equation ν (α ) − ϕ = 0, simply by resorting

to classical root-finding algorithms, such as Newton’s method or

Secant method. The relation between α∗ with β ,ϕ are drawn in

Figure 2. We can observe that for fixed ϕ, α first increases with

β then decreases, showing the trade-offs agents have to make be-

tween enhancing the precision of knowledge and paying for such

acquisitions. Also agents will tend to purchase less data for higher

marginal cost, confirming intuition.

Figure 2: Homogeneous agents. c1 = 1, c2 = 1/2

Furthermore, if we view ϕ as the unit price of cookies and let

Rev = 2ϕα∗ be the revenue of the platform provider, we can de-

termine the corresponding revenue-maximization price for Data

Market by a simple first-order derivation.

Proposition 3.3 (Revenue-Maximization Price). The revenue-
maximization price for a Data Market with 2 homogeneous agents is

ϕ∗ =
(c1−c2 )
6

√
3π β

, with corresponding optimal revenue Rev∗ = (c1−c2 )
√
β

6

√
3π

and equilibrium state α∗ = β
2
.

3.3 Heterogeneous Agents
In this subsection, we consider two directions of modeling hetero-

geneous agents. More concretely, we restrict that v1 = v2 = v , and
their classes differ only in that either ϕ1 , ϕ2, or β1 , β2. For these
heterogeneous settings, it is intuitive that (1) agent with higher

precision of prior knowledge will acquire less data when their cost

functions are the same, or (2) agent who has a higher marginal

cost of acquiring data (for example, poor data mining technology)

will buy less even their prior beliefs are the same. We will first

formally define these intuitions and verify them through a detailed

and rigorous analysis.

Definition 3.4 (Intuitive Equilibrium). A profile of (α∗
1
,α∗

2
) forms

an intuitive equilibrium if α∗
1
≥ α∗

2
under condition when ϕ1 < ϕ2

and β1 = β2, or condition when ϕ1 = ϕ2 and β1 < β2, vice versa.

Theorem 3.5. For 2 heterogeneous agents, 2 slots with GAS Learn-
ing and linear cost, there exists a unique NEDP , and it must be intu-
itive.

Proof. First we prove that any equilibrium (α∗
1
,α∗

2
) must be

intuitive. Denote νi (α1,α2, β1, β2) =
(c1−c2 ) ·(σ 2

1
+σ 2

2
)−

1

2

2

√
2π (αi+βi )2

.

Consider when β1 = β2 = β butϕ1 < ϕ2. Suppose α
∗
1
< α∗

2
. Then

it implies α∗
1
< α and α∗

2
> α . Then ∂π1

∂α1

= −λ1 ≤ 0 and
∂π2
∂α2

= γ2 ≥

0, so again we have ϕ2 ≤ ν2 (α
∗
1
,α∗

2
, β , β ) < ν1 (α

∗
1
,α∗

2
, β , β ) ≤ ϕ1, a

contradiction, so we must have α∗
1
≥ α∗

2
when ϕ1 < ϕ2.

Then consider another case when ϕ1 = ϕ2 = ϕ but β1 < β2. Simi-

larlywe can derive thatϕ ≤ ν2 (α
∗
1
,α∗

2
, β1, β2) < ν1 (α

∗
1
,α∗

2
, β1, β2) ≤

ϕ . It is also a contradiction. So α∗
1
≤ α∗

2
when β1 > β2.

Finally we prove the uniqueness of equilibrium. The unique-

ness of corner equilibrium can be proved similar to Theorem 3.2.

Consider an interior equilibrium (α∗
1
,α∗

2
) which must satisfy

(c1 − c2) · (σ
2

1
+ σ 2

2
)−

1

2

2

√
2π (αi + βi )2

− ϕi = 0, i = 1, 2.

Comparing the forms of i = 1, 2 we have√
ϕ1 (α1 + β1) =

√
ϕ2 (α2 + β2), (8)

It serves as a constraint for an equilibrium (α∗
1
,α∗

2
). Suppose there

exists another interior equilibrium (α ′
1
,α ′

2
), where α ′

1
< α∗

1
. By

equation (8) we haveα ′
2
< α∗

2
. Thenνi (α

′
1
,α ′

2
, β1, β2) > νi (α

∗
1
,α∗

2
, β1, β2) =

ϕi .Which implies (α ′
1
,α ′

2
) is not an interior equilibrium. Then there

is only one interior equilibrium. The interior equilibrium and corner

equilibrium cannot exist concurrently for the same reason described

in Theorem 3.2. So we now have completed the proof. □

The optimal DP strategy can also be calculated by applying root-

finding algorithms to equations νi − ϕi = 0. From Figure 3, we can

observe that one’s optimal DP strategy would increase with her

adversary’s prior precision and marginal cost.

Figure 3: Heterogeneous agents. c1 = 1, c2 = 1/2, β1 = 0.2,ϕ1 =
0.4.

4 GENERAL LEARNING MODEL WITH
CONVEX COST

In this section, we consider a more general scheme for any N ≥
2,K ≥ 1. Here we assume the prior valuation distributions to be

homogeneous for all agents: Fη (i ) = F . We extend the linear cost

model adopted in Section 3 to the space of all convex functions

Φη (i ) , which captures the fact that valuable information becomes

rare and harder to find as more efforts are exerted or time is wasted.



The difference between distinct classes of agents would be reflected

by their cost functions Φη (i ) . The learning structure Hαi follows
the same form for all agents.

First we focus on a homogeneous setting where Φη (i ) = Φ. The
following theorem shows that, as long as the learning process H is

strict log-convex with respect to α , the existence, the symmetry as

well as the uniqueness of equilibrium are assured. The intuition of

building such learning structure is that with more data, the relative

probability of information gain from DP would be larger.

Theorem 4.1. For an SPA A , if Hαi is strict log-convex with

respect to αi , i.e.,
∂2

logHαi
∂α 2

i
> 0, then there exists a symmetric and

unique NEDP for homogeneous agents.

We refer to Appendix A for the detailed proof of this theorem.

From the proof, we can find the purchasing strategy can be obtained

by calculating an equationWi (α ) = 0 via root-finding algorithms.

We next consider a heterogeneous setting, where marginal cost

function Φ′η (i ) may vary across different agents. We prove that

classes of higher marginal cost will always acquire less information

at an NEDP , as one direction of generalization for Theorem 3.5.

Definition 4.2 (General Intuitive Equilibrium). An NEDP is gen-

erally intuitive if it satisfies that agents of the same class acquire

the same quality of data: ∀i (µ = η(i )) ⇒ ∃αµ (α
∗
i = αµ ). Moreover,

classwith largermarginal cost will acquire less data:∀i,д (µ = η(i ))∧

(δ = η(д)) ∧ ∀α
(
Φ′µ (α ) > Φ′δ (α )

)
⇒ α∗i ≤ α∗д .

Theorem 4.3. For an SPA A , if Hαi is log-convex with respect to

αi , i.e.,
∂2

logHαi
∂α 2

i
> 0, then if NEDP exists, it must be intuitive for

heterogeneous agents.

The proof of Theorem 4.3 is provided in Appendix B.

A representative learning model is the Truth-or-Noise learning,

which we are going to formally define below. It is easy to verify its

log-convexity. As indicated by the name, in this model the quality

of signal is interpreted as the probability that an agent obtains the

ground-truth of ω, which is also consistence with existing works

concerning targeting [9].

Definition 4.4 (Truth-or-Noise Learning Model). In truth-or-noise

learning model, priors are uniform distributions on [ω,ω]. In other

words, F (x ) =
x−ω
ω−ω ,x ∈ [ω,ω]. F (x ) = 0 when x < ω and F (x ) = 1

when x > ω . The quality of signal α ∈ (1/2, 1]. Having purchasing

α , one may obtain just her precise ωi with probability α , or a noise
signal of sample mean ω with probability 1 − α .

5 NUMERICAL RESULTS
In this section, we report our numerical results on how agents

react to different strategic environments. We consider three types

of CTRs: ci = 2
−(i−1)

, ci = i
−1
, and ci = (log

2
(i + 1))−1. We name

them as EXP-CTR, HAM-CTR, and LOG-CTR, in decreasing order

of discounting effects. CTRs that are less discounted may stand for

a more popular online website. The agents in the evaluation are

configured to be homogeneous.

We will mainly investigate on GAS Learning and ToN Learn-

ing agents. We implement classical Newton’s algorithm to find

the optimal strategies. Having examined different combinations of

parameters, we found that normally GAS Learning agents may dis-

play certain properties within relatively small N while ToN is more

suitable for simulating environment where more agents are partici-

pating. We will next demonstrate our findings under representative

combinations of parameters in the following evaluations.
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Figure 4: GAS Learning. Comparison on number of slots.
Fixed EXP-CTR.

For GAS Learning, we vary the number of agents from 2 to 15

with step 1. We fix at a point β = 0.2,ϕ = 0.4. We first fix at EXP-

CTR in Figure 4. It shows that except for RTB case K = 1 that

the α∗ is decreasing with N , generally for other cases the α∗ first
increases with N up to a maximal point and then decreases. This

is due to the trade-off between the revenue brought by improving

the valuations precision and the loss ensued by fiercer competition.

Another tendency is that with more competitors coming in and

less ad slots become available, the agents would tend to purchase

less data. This is due to that agents are trying to avoid the risks of

losing the auction as the environment becomes more competitive

even after purchasing huge amount of data, which may bring only

large wasted data expenditure to the agents.
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Figure 5: GAS Learning. Comparison on CTRs. K = 5

In Figure 5 we fixK = 5. The curvatures show that for GAS Learn-

ing agents, the uphills of optimal strategies ascend steeper and the

downhills descend more gently, in websites with less discounting

effects. And in the long run as more competitors participate the

auction, agents tend to purchase more data in LOG-CTR than in

EXP-CTR. This illustrates the incentive effect that CTRs bring to

the agents. It can be interpreted as that in a popular online environ-

ment, such as one with LOG-CTR, agents are more likely to receive

more ad clicks that induces larger profits, than one with EXP-CTR.

Thus agents behave as they want to take chances to obtain higher

revenue in a popular website by purchasing enough amount of data.
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Figure 6: ToN Learning. Comparison on number of slots.
Fixed EXP-CTR.

For ToN Learning, we set the number of agents from 10 to 150

with step 10. We let ϕ = 2. First look at Figure 6. Pay attention

to that unlike GAS Learning, for ToN learning, when K is a even

number it will encounter a sudden drop at point N = K +2. And for
the same N the optimal α∗ may oscillate between adjacent even and

odd K . But generally, the overall tendency of optimal DP strategies

with respect toN still tends to decline whenK becomesmuch larger,

which again confirms the trade-off agents have to make between

profits made in auction and risk of wasted data purchasing.
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Figure 7: ToN Learning. Comparison on CTRs. K = 5

In Figure 7 we can observe that for ToN learning agents they

would purchase most data in LOG-CTR while least in EXP-CTR,

further illustrating the incentive effect in this scenario. But from the

graphs we can also notice that the turning point tends to occur at a

largerN after where the optimal DP strategy decreases more rapidly

as more agents are involved. So ToN learning agents normally

may be suitable for modeling advertisers facing larger number of

competitors.

6 RELATEDWORKS
In this section, we briefly review literatures about data usage in an

auction context.

Our work is closely related to previous ones which also con-

sidered the role of data in auctions. Specifically, [30] studied how

would improved targeting affect the revenue when facing different

number of advertisers. [9] researched the value of data for differ-

ent advertisers with different valuations or budgets. [24] designed

an optimal mechanism when considering data usage, which might

bring additional revenue. [22] provides an optimal signaling scheme

for revenue maximization for a second price auction. [4] designed

an optimal mechanism for selling data by assuming an one-round

protocol. [48] designed strategy-proof data auctions considering

negative externalities. Recent works [5, 20, 40] highlight theoretical

progress about targeting and signaling in ad auctions.

How to choose proper strategy for obtaining costly signals is

the main focus on topic of information acquisition [8, 18], whose

framework naturally fits data usages in auctions. [44] designed an

optimal mechanism considering acquisition process, which casted

insight on our framework design. [34] considered the optimal acqui-

sition strategy for one item in vickery auction, while ours extends

to a wide classes of ad auction with any number of ad slots. Re-

cent work [27] propose the optimal and efficient mechanisms with

dynamic acquisition.

The authors in [7] considered the interdependent relation be-

tween the valuations for acquisition, addressing the role of informa-

tion externalities in an auction. This issue is particular important

in ad auction since advertisers’ valuations toward ad slots may be

interdependent to each other and satisfy common-value model. The

roles of information asymmetries in common-value vickery auction

was addressed in [1], where the complex condition of equilibriums

was refined to as a new concept called TRE. [45] considered two

asymmetrically informed bidders in a common-value auction with

discrete signals and give the characterization of equilibrium. The

authors in [10] derived when would the agents choose to observe

the signal under certain interdependent structure. [25] proposes

an approximation algorithm for winner determination under ex-

ternalities. [36] researched the effect of information externalities

in GSP mechanism, which were naturally raised when considering

data usage. Nevertheless, since in our model the signaling process

is modeled as a complete information game while advertisers’ valu-

ation are assumed to be independent, we do not concern consider

these issues and defer them for future works.

7 CONCLUSION
In this paper, we have considered the data purchasing problem faced

by advertisers before an ad auction. Having properly formulated

the problem and the objective, we started with a simple scenario

and have solved it through rigorous mathematical analysis. The

intuitions have been extended to a more general scheme which

embraces a wide class of learning agents. Our numerical results

have revealed the relations between the optimal strategies with

different configurations of the strategic environment.

A PROOF OF THEOREM 4.1
Proof. First we prove the existence of equilibrium. The log-

convex constraint of Hαi is equivalent to:

∂2 logHαi

∂α2i
=

1

H2

i



∂2Hi

∂α2i
Hi − (

∂Hi
∂αi

)2

> 0. (9)

Then we have
∂2Hi
∂α 2

i
> 0 for all αi . And so Hαi is strictly convex in

αi . Thus,

∂2πi (αi )

∂α2i
= −

∫ ω

ω

∂2Hi (v )

∂α2i
Qi (v )dv < 0. (10)



Nextwe look at the KKT condition for bidder i , denoteνi (αi ,α−i ) =

−
∫ ω
ω

∂Hαi (v )
∂αi

Qi (v )dv , we have




∂πi (αi ,α−i )
∂αi

= νi (α ) − Φ′(αi ) = −λi + γi
λi (αi − α ) = 0

γi (αi − α ) = 0

λi ,γi ≥ 0

(11)

We first prove the equilibrium must be symmetric. Suppose

α∗
1
< α∗

2
, which implies α∗

1
< α and α∗

2
> α . We have γ1 = 0 and

λ2 = 0. Thus,

∂π1 (α ∗
1
,α ∗

2
,α−1,2 )

∂α1

= −λ1 ≤ 0 and

∂π2 (α ∗
1
,α ∗

2
,α−1,2 )

∂α2

=

γ2 ≥ 0. Then we obtain Φ′(α∗
1
) ≥ ν1 (α

∗
1
,α∗

2
,α∗
−1,2) and Φ′(α∗

2
) ≤

ν2 (α
∗
1
,α∗

2
,α∗
−1,2). Butwewill proveν1 (α

∗
1
,α∗

2
,α∗
−1,2) > ν2 (α

∗
1
,α∗

2
,α∗
−1,2)

which leads to Φ′(α∗
2
) < Φ′(α∗

1
).

Look at quantity

ν1 (α
∗
1
,α∗

2
,α∗−1,2) − ν2 (α

∗
1
,α∗

2
,α∗−1,2)

= −

∫ ω

ω



∂Hα ∗
1

(v )

∂α∗
1

Q1 (v ) −
∂Hα ∗

2

(v )

∂α∗
2

Q2 (v )

dv .

(12)

We want to transform the integrated part in (12) in a more explicit

form. Recall the definition of Qi in Section 2.3 we can observe that

it is a summation whose terms include a series of product of form

H and 1 − H . What we do is simply rearrange the production to

"match" terms of 1, 2. For example, term

∂H1 (v )

∂α∗
1

∏
n,1

Hn −
∂H2 (v )

∂α∗
2

∏
n,2

Hn =

N∏
n=1

Hn



∂H1

∂α ∗
1

H1

−

∂H2

∂α ∗
2

H2


The similar procedures can be applied to every matched terms.

So we will eventually turn equation (12) into a summation of terms

of form

−M ·

∫ ω

ω

[
∂H1

∂α∗
1

1

дi (H1)
−
∂H2

∂α∗
2

1

дi (H2)

]
dv, i = 1, 2. (13)

Hereд1 (H ) = H andд2 (H ) = 1−H , andM > 0 is a series produc-

tion of form of 1−H andH independent of 1, 2. The strict log-convex

of H is equivalent to that

∂Hαi (v )
∂αi

1

f1 (Hi )
is strictly increasing. And

by (9) we can conclude form of

∂Hαi (v )
∂αi

1

f2 (Hi )
are also increasing

just by verifying the positiveness of its first derivative on αi :

∂

∂αi

[
∂Hαi (v )

∂αi

1

1 − Hαi (v )

]
=

1

(1 − Hi )2



∂2Hi

∂α 2

i
(1 − Hi ) + (

∂Hi

∂αi
)2

> 0.

(14)

Therefore, terms of form (13) are all positive. Thus,ν1 (α
∗
1
,α∗

2
,α∗
−1,2) >

ν2 (α
∗
1
,α∗

2
,α∗
−1,2). However, this indicates Φ

′(α∗
2
) < Φ′(α∗

1
) which

implies α∗
1
> α∗

2
, a contradiction. So the equilibrium must be sym-

metric.

We now prove the equilibrium must be unique. First we show

the interior equilibrium must be unique. For interior equilibrium

α = (α∗,α∗ . . . α∗),νi (α ∗)−Φ′(α∗) = 0. DenoteWi (α
∗) = νi (α ∗)−

Φ′(α∗). What we’ll prove is thatWi (α ) is monotonically decreasing.

NoticeW ′i (α
∗) =

N∑
n=1

∂νi (α ∗ )
∂αn

− Φ′′(α∗). Recall we assume that

Φ′′ ≥ 0. And by (10)
∂νi (α ∗ )
∂αi

< 0. For i , n, w.l.o.g., let i = 1,n = 2,

notice that

∂ν1 (α )

∂α2
= −

∫ ω

ω

∂H1 (v )
∂α1

∂Q1 (v )
∂α2

dv

= −

∫ ω

ω

∂H1 (v )
∂α1

∂H2 (v )
∂α2

*.
,

K∑
k=1

ck (−Rk−1 (v ) + Rk (v ))
+/
-
dv

= −

∫ ω

ω

(
∂H1 (v )
∂α1

)
2 *.
,

K+1∑
k=2

(ck−1 − ck )Rk−1 (v )
+/
-
dv < 0

Where Ri =
∑
T ,

T ⊆{3,4· · ·N },
|T |=i−1

∏
∈T

(1−Hn )
∏

l ∈{3,4· · ·N }\T
Hl , for 1 ≤ i ≤ K

and R0 = 0.

The idea of the above transformation can be concretely seen

from the following example:

∂

∂α2



c1

N∏
l=2

Hl + c2

N∑
n=2

(1 − Hn )
∏
l,n,1

Hl + . . .



=
∂H2

∂α2
·


c1

K∏
l=3

Hl + c2
*.
,
−

N∏
l=3

Hl +

N∑
n=3

(1 − Hn )
∏

l,n,1,2

Hl
+/
-
+ . . .



=
∂H2

∂α2
·


(c1 − c2)

N∏
l=3

Hl + (c2 − c3)
N∑
n=3

(1 − Hn )
∏

l,n,1,2

Hl + . . .



So we can see that the order of CTRs plays an important rule in

our proof. Thus,
∂νi (α ∗ )
∂αn

< 0 for i , n. And soW ′i (α
∗) < 0. The

monotonicity shows the uniqueness of symmetric equilibrium.

We now move to the proof of the uniqueness of corner equilib-

rium. There are only two possible corner equilibriums: (α ,α . . . α )
and (α ,α . . . α ). By KKT condition (11), we have νi (α ,α . . . α ) ≤
Φ′(α ) for equilibrium (α ,α . . . α ) and νi (α ,α . . . α ) ≥ Φ′(α ) for
equilibrium (α ,α . . . α ). By (9) we proved νi (αi ,α−i ) is strictly de-

creasing in αi , we have νi (α ,α . . . α ) > νi (α ,α . . . α ), so two possi-

ble equilibriums cannot exist concurrently.

Last we show there is only one possible equilibrium, either inte-

rior or corner. W.l.o.g. suppose (α ,α . . . α ) and (α ,α . . . α ) both ex-

ist. Then we have ν (α ,α . . . α ) = Φ′(α ) and ν (α ,α . . . α ) ≤ Φ′(α ).
But this implies Φ′(α ) = ν (α ,α . . . α ) < ν (α ,α . . . α ) ≤ Φ′(α )
which means α < α , a contradiction.

We now have completed all the proof that the NEDP must be

symmetric and unique. □

B PROOF OF THEOREM 4.2
Proof. by Theorem 4.1, bidders of the same type must acquire

the same quality of information.

Next we consider bidders in different groups of type. Consider

class µ,δ where Φ′µ (α ) > Φ′δ (α ), and bidder i in type µ and д in

type δ . If they acquire the same quality of information α∗, by equa-

tion (11) we have Φ′µ (α
∗) = νi (α ∗) = νд (α ∗) = Φ′δ (α

∗) since their

beliefs are identical in prior. But we have assumed Φ′µ (α ) > Φ′δ (α ),
so it is a contradiction. Therefore, the quality of information ac-

quired by different type of bidders must be different.

Suppose in this condition α∗µ > α∗δ . Then by Theorem 4.1 we ob-

tain that Φ′µ (α
∗
µ ) = νi (α

∗) < νд (α ∗) = Φ′δ (α
∗
δ ) which contradicts

to our assumption. So the equilibrium must be intuitive. □
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